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Abstract 0 The present investigation was undertaken to examine
the basic unit of densification: the particle−particle indentation. The
true interparticle contact area that is established during densification
ultimately determines the quality of the tablet compact. By examining
the interfacial contact between mutually indenting viscoelastic particles,
the process of contact evolution may be represented in mathematical
form through extension of the classical Hertzian elastic contact
description to encompass material viscoelastic terms. In this way, the
time-dependent response of materials to applied loads may be
addressed explicitly. The effects of rates of applied loading and
maximum load levels were also considered. This analysis was based
on viscoelastic stress data collected using an instrumented Instron
analyzer during the densification of PMMA/coMMA, a pharmaceutical
polymeric coating material. A crossed cylinder matrix compaction
geometry was used to simulate the geometry of two mutually indenting
spherical particles. Numerical and graphical solutions delineating the
relationship between contact area evolution and the prescribed loading
force are presented. This particle−particle description of the contacting
interface serves as a unit basis for describing the entire powder bed.
The powder bed may ultimately be modeled as a collection of these
particles in contact.

Introduction
Oral administration is the most common route of drug

delivery for systemic circulation. The tablet is the leading
oral form; it’s simplicity, portability, and economic value
enhances patient compliance. Tablets exist in diverse
forms, ranging from conventional disintegrating forms to
advanced modified-release systems, but all are formed
through a common pathway, namely, through powder
densification.

Powder densification consists of sequential and concur-
rent processes where particles are brought into intimate
contact, interparticulate bonds are formed, and dimen-
sional changes occur as a result of stress redistribution.
Time-dependent phenomena inherent in these processes
may govern the ultimate quality of the compact produced.
Permanent densification occurs when stress exceeds the
elastic strain limit of a given material. The extent of this
nonrecoverable deformation depends on the time in which
the applied stress exceeds this material yield stress. It is
viscoelastic theory that serves to quantitate this time
dependence and provide a description of the relationship
between the strain rate of the material in a plastic state
and the stress required to produce that strain rate.

The compaction of powders is a complex process. The rate
at which compacts are formed determines the final tablet

strength and viability.1-4 With the advent of modern
processes, the high speeds of compaction emphasize the
time-dependent component of material behavior. This
complexity is reflected in the large-scale manufacturing of
tablets where problems of low tablet strength, capping and
sensitivity to material batch variability exist and are
translated into costly overruns. Resolution of these prob-
lems often involves multiple formulation adjustments
based on empirical knowledge rather than the reasoned
use of physical data; improving the theoretical understand-
ing of the compaction process would enable a more rational
approach to the formulation of tablets.5

It is conjectured that problems arise during tablet
production as a consequence of viscoelasticity combined
with poor interparticle bonding. The amount of elastic
recovery of the particles depends on the release of elastic
strain during decompression and tends to disrupt inter-
particle bonds. This stress relaxation is a function of the
viscoelasticity of the material, which in turn is influenced
by the speed of compression and decompression. At high
compaction speeds, the internal stress after compaction is
high and the propensity of the material for elastic recovery
is considerably higher than at low compaction speeds.

Existing approaches to assess powder compaction have
mainly tried to quantify compression in an empirical form.
The equations proposed to empirically fit compaction data
with parameters such as punch and die wall stresses and
tablet porosity6-9 offer little insight into the physical basis
for particle interaction. Therefore, they remain descriptive
rather than predictive of powder densification.

A predictive model of compaction must explicitly incor-
porate material viscoelastic terms into a working descrip-
tion of densification. Analytical models that describe
densification from the deformation of particles serve to
facilitate the selection of production process parameters
such as pressure, temperature, and time. The present
investigation was undertaken to examine the basic unit of
densification: the particle-particle interaction. By defining
the contact between mutually indenting viscoelastic par-
ticles, the compact may ultimately be modeled as a collec-
tion of these particles in contact and in this way address
the time-dependent response of materials to applied loads.

Rationale
In random close packing of a powder bed, point contacts

exist between adjacent particles. The density of the powder
increases through processes that flatten these contacts
between particles. The degree of interparticle bonding and
bond strength, which which determines the ultimate qual-
ity of a tablet, is assumed to be largely governed by the
magnitude of the true interparticle contact area created
during densification. This process of contact evolution may
be represented in mathematical form through amelioration
of the classical Hertzian elastic contact description to
encompass material viscoelastic terms. In this way, a

* Author to whom all correspondence should be sent. Telephone:
(416) 978-2889. Fax: (416) 978-8511. E-mail: susan.lum@utoronto.ca.

† Faculty of Pharmacy.
‡ Consultant, Grian Facilitations, http://www.grian.com, 1929 Howard

Drive, Amarillo, TX, 79106.

© 1999, American Chemical Society and 10.1021/js980010m CCC: $18.00 Journal of Pharmaceutical Sciences / 261
American Pharmaceutical Association Vol. 88, No. 2, February 1999Published on Web 01/15/1999



quantitative measure of the contact deformation between
mutually indenting viscoelastic particles may be defined.

Theoretical Section
The time-dependent stress and indentation behavior of

the test matrixes were modeled in terms of a standard
linear viscoelastic rheological form transposed into the
classical elastic description of contact. Components of the
theory underlying this contact deformation may be found
interspersed in the literature for specific geometries.10,11

The following derivation of the theory describing the
contact between spherical particles of a viscoelastic mate-
rial, as applied to these studies, is developed in detail for
the integral understanding of the resultant model.

Boundary Conditions for the Deformation between
Two Spherical Bodies in ContactsThe geometry of the
surface of undeformed spheres near the center of contact
are smooth surfaces that can be described with sufficient
accuracy, as shown in Figure 1, by

and the mutual distance between points is

If the spheres are compressed together by a normal force
P, there will be a local deformation near the point of contact
producing contact over a small surface with a circular
boundary, hence, the surface of contact arises.

Let w1 and w2 be the deformations of the two spheres
owing to the contact pressure, a the radius of the contact
region, and R be the total distance of approach of the two
spheres from the state of point contact. The deformed
configuration is shown in Figure 2. The condition

is to be satisfied at each point in the contact region. By eq
2

If points lie outside the contact area so that they do not
touch it follows that

from geometry alone.
Pressure between Two Spheres in ContactsThe

distribution of pressure transmitted between the two bodies
at their surface of contact must be such that the resultant
displacements normal to that surface satisfy eq 4 within
the contact area and eq 5 outside it. Because the contact
region is comparatively much smaller than the dimensions
of the bodies (r , R1 and R2), the relation between the
surface deflection of each body and the contact pressure
can be represented approximately by the solution for
surface deflection of a semi-infinite body with pressure
distributed on part of its surface. The errors incurred by
assuming that the spheres are half-spaces are smaller than
those due to the assumption of infinitesimal strains.12

Let a(t) be the radius of the contact region and R(t) the
total distance of approach. For a given concentrated force
acting on a boundary plane of a semi-infinite solid, the
displacement is given by11

where w is the total displacement, q is the intensity of
pressure between the bodies in contact, υ is the Poisson’s
ratio, E is the elastic modulus, and r is the distance from
the center.

In the case of an uniform load distributed over the area
of a circle of radius a, if a point D is within the loaded area,
the displacement produced is found by superposition. The
load on the shaded element in Figure 3 which represents
the surface of contact, is qsdψds. The displacement in the
direction of the load is then

If there is no pressure between the bodies, we have contact

Figure 1sSchematic for the 2-D projection of a contact area. The equation
of a translated circle with respect to the origin in the x−y Cartesian coordinate
plane at a point designated (r,z) (where R is the radius of the circle) and
where one assumes that 2R . z is ∴z = r2/2R. This is valid for cases
where deformations are small.

Figure 2sSchematic for the deformation between two spheres from the state
of point contact. The deformed configuration is shown with dotted lines
indicating the distance of approach of either sphere.
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at one point O. Points D and C are on a meridian section
of the spheres, on the plane tangent at O, at a very small
distance r (r is small in comparison with R1 and R2) from
the axis.

The total deflection of a point on the circular contact
surface is then obtained by double integration

because the length of the cord indicated by bc ) 2r ) 2a

cos θ and because r ) a cos θ ) xa2-r2sin2ψ the area of
the circle ) πr2 ) π(a2 - r2 sin2 ψ) and ψ varies from 0 to
π/2 (see Appendix I):

Expressions for the Displacement and Radius of
the Contact Surfaces Let (1 - υ2)/πE ) k1 + k2 and
assume a Hertzian pressure distribution wherein the
scale11 representing the pressure distribution is the con-
stant q0/a. Thus from eqs 4 and 9, for two same sized
spheres in contact,

Which is then solved by making a term-by-term equiva-
lence between the left- and right-hand sides of this equation

And because

By adopting the Hertzian pressure distribution assumption
(see Appendix II),

which relates the maximum pressure, q0, to the loading
force, P. We thus find

by substituting eq 14 into eq 13.
Extension to the Viscoelastic CasesSolutions to the

contact problem must accommodate mixed boundary condi-
tions, assigned depending on whether the point in question
lies inside or outside of the contacting region. Within the
contacting area, the sum of the surface displacements of
the two bodies must satisfy constraints to ensure perfect
contact, whereas the surface traction must vanish outside
of the contact area.

At first reckoning it may appear that Laplace transforms
could be useful in addressing the viscoelastic or time-
dependent contact case by removing the time variable in
the governing equations and boundary conditions. Hence,
the problem may be reduced to a corresponding elastic
problem with the Laplace transform variable as a param-
eter. The desired viscoelastic solution would then be an
inversion of the solution to the corresponding elastic case.

Viscoelastic contact regions, however, vary with time.
Some points initially outside of the region of contact may
fall later into the contacting region as the result of the
growing indentation area. For these points, neither the
traction nor the displacement may be prescribed completely
throughout the development of the problem; the transform
method may not be used directly to supply a solution to
the problem.

Notwithstanding, it has been shown through inductive
reasoning that the contact problem in elasticity may be
generalized to include the contact of viscoelastic bodies with
a restriction that the indentation must be monotonically
increasing. Lee and Radok13 treated a range of problems
that fall outside the scope of the transform method by
taking a family of solutions of the elastic problem with the
parameter time, with the same boundary conditions as the
viscoelastic problem, and replacing the elastic constants
with the appropriate viscoelastic operators in the expres-
sion for stress components. The results comprise tractable
mathematical equations for evaluating the stress compo-
nents for the viscoelastic body.

In the elastic case of mutual indenting spheres, as shown
in eqs 11-15, the normal contact pressure p(r,t) of the
assumed elastic half space is the relation14,15

where G is the shear modulus, υ is the Poisson’s ratio, and
a(t) is the contact area radius. Time appears only as a
parameter prescribing the current radius of contact in this
quasistatic approach. The elastic constants do not contain
time explicitly and so when they are replaced by general
linear operators, the solution at any time t depends solely
on the instantaneous value of the boundary condition and
not on the history of the process.

The viscoelastic counterpart of this Hertzian problem in
elasticity as deduced from the elastic solution is then

where f(r,t) ) xa2(t)-r2, P, and Q are linear operators in
the time variable.

The problem is now defined by a normal surface traction
p(r,t) and a zero shear traction and is amenable to analysis
by the Laplace transform procedure. The transformed

Figure 3sSketch of a circular contact region of radius a. This is the surface
of contact over which an uniform load has been distributed.
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surface pressure

is then related to Qh , Ph , the transformed form of the
operators. If integral operators are used, the convolution
theorem then determines the transformed form.

This procedural manipulation of the operators is valid
as long as the contact area does not decrease. In any
physically reasonable contact problem of this type, to
satisfy the restriction of the Hertz theory, the region of
contact will be limited to a finite area. The transformed
pressure given by eq 18 is thus nonzero only inside this
maximum region of the contact. If the radius of contact
increases to a maximum and then decreases to zero, then
the normal deflection of the entire surface would reduce
to zero, contradicting the reality of viscoelastic material
behavior. Delayed elastic and viscous components of strain
would be expected to leave a residual indentation after
contact has ceased.

The reason for this paradoxical result is that if a(t)
passes through a maximum and decreases, then the
corresponding p(r,t) usually passes through zero and takes
on negative or tensile values. When a(t) then decreases, a
residual tensile surface traction is left at the points
formerly in the contact region, which violates the contact
condition that outside the current region of contact the
surface traction should be zero. This dilemma does not arise
with nondecreasing a(t) because the zero initial condition
for all earlier times guarantee zero traction outside the
region of contact.

What follows is a derivation of the formula for the
extension of the contact problem to linear viscoelastic
spheres. To reduce the complexity of the problem, a number
of assumptions were adopted. It was assumed that both
bodies in contact were isotropic, homogeneous, and linearly
viscoelastic. The material properties were characterized by
creep or relaxation functions. Moreover, the surfaces were
considered smooth to neglect the effect of friction. Small
strains were assumed, as evidenced in the preceding
derivations where the area of contact is small in compari-
son with the dimensions of the contacting bodies. The
indentation area should furthermore increase monotoni-
cally with time. And finally, shear and dynamic and
intermolecular force effects were neglected.

Rheological Model for Viscoelastic CasesThe be-
havior of viscoelastic materials under uniaxial loading may
be represented by means of conceptual models composed
of elastic and viscous elements. Such rheological forms are
useful as analogues for stress and strain. The basic
elements of springs and dashpots also assists in the
conceptualization of the material behavior.

An ideal helicoidal spring element would be perfectly
linear and massless, representing Hooke’s Law:

where E is the modulus of elasticity with dimension (force/
length2). The spring has a creep function H(t - τ)/E and a
relaxation function EH(t - τ). The dashpot as an ideal
viscous element extends at a rate proportional to the force
applied, according to Newton’s Law:

where ε̆ ) ∂ε/∂t is the rate of strain and η is the viscosity
coefficient with dimension (force × time × length-2).

Different combinations of springs and dashpots afford
flexibility in portraying different responses. Whereas simple

models are inadequate representations of real viscoelastic
behavior, a three-parameter, standard model consisting of
two springs and a dashpot has successfully portrayed real
material behavior.17,18 A standard model was thus em-
ployed in the extension of the description of particle contact
to the viscoelastic case.

In operational form, this standard model (Figure 4)
appears as

By integrating over a strain history ε(t)

Wherein the creep function is

and the relaxation function is

Linear ViscoelasticitysMany materials, notably poly-
mers, exhibit time-dependent behavior in their relation-
ships between stress and strain. The common features of
a three-parameter or standard solid viscoelastic behavior
includes an initial elastic response to an applied or
eliminated stress, a delayed elastic response, and a per-
manent strain that is acquired through the action of creep.

Linear viscoelastic relationships are valid for small
strains and assume the principle of superposition holds:16

a stress history of

corresponds to a strain history of
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Figure 4sIllustration of the stress−time relation in association with a standard
three-parameter rheological model.
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Materials often exhibit linear behavior at low stresses and
nonlinear viscoelastic behavior at high stresses.

The stress-strain relations for a linear viscoelastic
material are commonly expressed as a relaxation function,
Ψ(t). This function, as already deduced from a standard
spring-dashpot model, expresses the stress response to a
step change in strain.

Viscoelastic Case AnalysissAs the preceding conten-
tion shows, the interfacial description of two linearly
viscoelastic spheres in normal contact may be described
mathematically by replacing the elastic constant of the
elastic solution by the integral operator from the viscoelas-
tic stress-strain relations. For simplicity, the case of an
isotropic, homogeneous, incompressible, and linearly vis-
coelastic material in the absence of shear is considered.
These stipulations facilitate the analytical solution for the
case of indentation of smooth viscoelastic spheres; the
three-dimensional constitutive equations can be simplified
to allow for the application of one pair of viscoelastic
operators, p and q, as described by the stress-strain
differential equation (see Appendix III):19

The condition of very small strains permits the use of linear
viscoelastic theory, although it is not a necessary restriction
in the treatment detailed by Lee and Radok.13 The elastic
constants can be replaced by viscoelastic terms in the
method of analysis for contact of smooth bodies of arbitrary
linear viscoelastic materials, just as the Hertz solution
applies for arbitrary smooth elastic bodies.13 The form of
the viscoelastic operator can be expressed in terms of the
creep compliance or relaxation function found in eqs 23 or
24.

Thus, the contact between spherical particles may be
described by substituting the viscoelastic operator (Ψ(t),
eq 24) for the elastic constants in the elastic solution found
in eq 15. We then have

and

where

is a descriptor of viscoelastic material behavior. These
equations, therefore, delineate then an explicit relation
between contact area evolution and the applied contact
force; a relation that will form the basis for the superposi-
tion of such contacts in summation over the entire powder
bed.

Experimental Section
InstrumentationsAn Instron 4206 stress-strain analyzer,

housed in a climate-controlled room (T ) 26 °C, RH ) 45 ( 6%),

was instrumentized through the addition of a 12-bit 10 mV
unipolar A/D data acquisition board (PC-LPM-16, National Instru-
ments, Austin, TX). With an op-amp added in line, the voltage
signals from up to 8 channels exiting the control console were
digitized for collection on a 486-DX clone. The commercial software
provided with the board was modified to facilitate signal collection;
the testing force was monitored at 250 points per second and
averaged over 25 points to reduce spurious fluctuations associated
with noise.

Rods to be tested were oriented either axially or radially in
stainless steel holders that were machined to fit the contour of
the halved rods and that clamped directly onto the upper and lower
base platens of the Instron. The test samples were held in
compression and the forces experienced by the samples were
measured as that transmitted by the load cell. The configuration
is displayed in Figure 5.

The 5 kN, 150 kN reversible load cells, and the Instron itself
were serviced and calibrated by the source company (Instron) prior
to beginning experimental testing. Signal output to the board was
calibrated to the force displayed on the console by verifying emitted
voltages with a digital multimeter (Beckman 4.5 digit model 800).
This calibration extended beyond the experimental applied forces
associated with the displacement measurements and served to
establish both the calibration factor and the linearity of response
(r2 > 0.999).

MaterialssInhibitor-free methyl methacrylate (MMA; Fischer,
lot no. 911696) and methacrylic acid (MA; Aldrich, lot no. 07015EZ)
were used as they were received. 2,2′-Azobisisobutyronitrile (AIBN;
Analychem Corp. Ltd., Markham, Ontario, lot no. 413286) was
recrystallized from isopropyl alcohol, and the HPLC grade tet-
rahydrofuran (THF) (Fischer, lot. no. 904140) was freshly distilled
prior to use.

Specimen SynthesissIdeal contact between two spheres is
difficult to achieve experimentally, so the geometry was ap-
proximated by the contact of crossed cylinders at 90°. Poly(methyl
methacrylate)/comethacrylic acid (PMMA/coMAA), an amorphous
acrylic polymer similar to the commercial pharmaceutical Eudragit,
was chosen as the model material for study. Although the flow
and material properties of PMMA alone are well documented, the
copolymer material is more commonly employed in pharmaceutical
coating and encapsulation.

PMMA/coMAA cylinders were prepared by free radical bulk
polymerization of a 1:1 mole ratio mixture of inhibitor-free MMA
and inhibitor-free MAA using recrystallized AIBN as the initiator.
The mixture was deaerated by repeated freeze thawing under an
argon blanket, and the polymerization was carried out in sealed
13-mm diameter glass molds under Argon at 25°C for 4 weeks
(Atmos environmental bag, Sigma Chemical Company, St. Louis,
MO). During solidification, the molds were continuously agitated
to minimize porosity from trapped gas bubbles (Psycrotherm
Incubator shaker model R-27, ser. 8695; NewBrunswick Scientific
Company Inc., New Brunswick, NJ). The resulting cylinders were
purified by extracting any residual monomer, side products, or
initiator by Soxhlet reflux (MeOH/water, 60/40 by volume). Rods
were halved longitudinally, polished, and used together as the
opposing upper and lower contact elements in compression (wire
saw and diamond impregnated wire blades, 0.010” diameter, South
Bay Technology, San Clements, CA; Crystal Bay crocus abrasive
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Figure 5sPMMA/coMAA cylinders displayed in crossed cylinder compaction
geometry. Matrixes are mounted in stainless steel holders, which in turn are
clamped to the platens within the Instron assembly.
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cloth, 3M Canada Inc., London, Ontario, Canada). A nominal
aspect ratio (length-to-diameter ratio) of at least 2:1 was chosen
to avoid complications of edge effects or barreling during compres-
sion. Care was also taken that the material did not come into
contact with water or any contaminant while the specimens were
being prepared or during subsequent handling and testing; mainly
by storage with desiccant under an argon blanket. The samples
for this study were annealed at 170 °C for 2 h prior to deformation
testing.

Polymer CharacterizationsChanges in material morphology
and properties among sample matrixes were controlled by anneal-
ing and monitored by microhardness and acoustic testing as
described elsewhere.20 The mean diameters of five indentations
per sample were used to calculate the Knoop hardness values and
the corresponding elastic moduli, which averaged 11.3 ( 3.9 MPa
and 5.67 ( 0.2 GPa, respectively, at 25 °C. The copolymer was
further characterized by a variety of means as reported previously:
21 solid density measurements at various temperatures by stere-
opycnometer yielded F ) 1.20 g/mL at 20 °C (SE ) (0.001 g/mL),
differential scanning calorimetry scans showed a Tg ∼ 175 °C and
no evidence of crystallinity, copolymer composition was checked
by Fourier transform infrared (FTIR) spectroscopy, and the
viscosity average and weight average molecular weight were
determined, respectively, by capillary viscometry and low angle
laser light scattering, Mw ∼ 5 × 105.

Contact DeformationsCompaction between two cylinders
was performed on the instrumentized Instron already described
at four rates ranging from 1 to 10 mm/min and at four loads
ranging from 3.0 to 4.5 kN. Stress relaxation was also monitored
for 20 min after the peak load was achieved. At least three runs
were performed at each load level and nominal strain rate. The
contacting surface radius was determined concomitantly by optical
means.

Growth of the contact area, produced by the forces applied to
the mutually indenting rods, was measured photomicroscopically
with an automated camera system equipped with a custom 10-
mm microlens. The camera was mounted on a tripod parallel to
the interface of the contacting matrixes, loaded with bulk film,
and driven frame by frame by synchronized relay (Nikon F-250,
Nippon Kogaku, Japan; TMAX 100 black and white film, Kodak,
Canada; Nikon film winder cassette; Intervalomeer HN-I with
single or continuous relay and motor driver, HN1 Anglophoto Ltd,
Montreal). The timing of the relay and subsequent shutter interval
was checked by stopwatch and matched to the timing of the force-
data acquisition. High contrast photos were taken of the contact
zone at 90° to the axis of compression at 1 s intervals, processed,
magnified, and measured (Mitotuyo 500-133 vernier calipers). The
instrumentation is depicted in Figure 6 for purposes of visualiza-
tion. The data from these measurements were analyzed according
to methods described next.

Data AnalysissForce-Time SignalsBelow 0.6 kN on all
preliminary and subsequent curves, a distortion was evident in
the applied force that produced a replicate kink in the force-time
plot across all applied loads and nominal strains. This artifact was

attributable to the operational system of the Instron employed.
Although hydraulically loaded systems provide an instantaneous
force to the testing area, screw-loaded systems must overcome the
give or stiffness of the machine before actual loading occurs. The
screw-loaded Instron 4206 was employed because of its avail-
ability.

The force-time signals relayed to file were smoothed at <0.6
kN. The 0.6 kN value itself corresponds roughly to the 7.5% limit
of sensitivity specification for the 5 kN reversible load cell
employed for the majority of the experimental runs. Fortran
subroutines were written to handle the data sets. The collected
force signals were converted by the calibration already noted fitted
to a power form by nonlinear regression following a Marquardt
algorithm, and back extrapolated at 0.6 kN to the proper abscissa
point to offset the time-lag associated with the screw loading.

In the nonlinear least-squares fitting, a chi squared merit
function was defined and a best-fit parameter determined by its
minimization. The iterative minimization proceeded from trial
values input for the parameter following a Marquardt subroutine
method (template22), which varies smoothly between the extremes
of the inverse-Hessian method and the method of steepest descent.
Several initial values were iterated through to safeguard against
convergence onto a local rather than a global minimum. For each
of the 4 × 4 matrix experiments repeated in triplicate, the best fit
was assessed by minimization of the sum of squares, comparison
of the multiple correlation coefficient, and examination of the
residuals and the standard error associated with the estimate of
the coefficient to the power form.

The resultant equations for the 4 × 4 design, of the form force
P(time) ) coefficient*(time-lag time)power were amassed and as-
sessed for correlations with the prescribed load levels and nominal
strain rates. Multiple linear regression was applied in both forward
and backward substitution forms for various combinations and
permutations of the load level and crosshead rates. The best
aggregate description was determined on the basis of assessment
of the adjusted R, the standard error of the estimate, and the mean
square residuals.

Radial Growth DatasThe measured contact radii were
normalized by the initial apparent contact radius that occurs as
a result of the weight of the upper rod resting on the lower.
Although the timing relay between photos was calibrated by
stopwatch, minor variations accruing from the finite shutter speed
time necessitated checking the timing intervals between radii
measurements. This calculation was accomplished given the peak
force time signal and the number of frames advanced. Accounting
also for measurement magnification, and the lag-time associated
with screw loading, the radii data provided normalized radius
growth with time curves in triplicate for the 4 × 4 design (for
various nominal strain rates and ultimate loading levels).

Calculation of Material Viscoelastic Parameterss
Relaxation or creep compliance functions are traditionally mea-
sured by creep tests, in which constant strain rates or stresses
are applied to achieve constant stresses or strain rates, respec-
tively, at various elevated temperatures. These measurements
require long loading times to reach steady state, which may change
either the geometry of the specimen or the microstructure and
hence the stress-strain relation. Changes such as these are
especially important in porous powder materials which tend to
densify during indentation creep testing.

Following the method of Hsueh,23,24 the viscosity and the two
elastic moduli of a three-parameter model constructed to represent
a viscoelastic material were determined from the experimental
stress-time curve generated from short-term loading at a constant
strain rate (ε̆0) followed by a period of stress relaxation. By
decomposing the stress-time curve into the applied periods of
strain, then for ε̆ ) ε̆0,

During the stress relaxation phase, ε̆ )0 and

Figure 6sInstrumentation associated with compressional loading of polymer
matrixes and concomitant photomicroscopy survey of contacting region: (a)
Instron 4206; (b) Instron control console; (c) op-amp for signal transduction;
(d) timing relay; (e) single switch or continuous relay; (f) 486DX for automated
data acquisition and control, equipped with A/D board; (g) contrast illumination;
(h) bulk loaded camera driven through electronic relay; (i) samples mounted
within platens; and (j) reversible load cell.

σ(t) ) ( E1

E1 + E2
)2

ηε0[1 - exp-
(E1 + E2)

η
t] +

E1E2

E1 + E2
ε̆0t (31)

σ(t) ) σ∞ + (σf - σ∞) exp- (t - tf)
(E1 + E2)

η (32)
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where

for t > tf, where τ ) η/(E1 + E2), and A ) (E1/E1 + E2)2ηε̆0.
Examination of the stress-time curve provides estimates for

tf, the time at which stress relaxation begins, σ∞, the limiting
stress, and, by plotting ln (σ - σ∞) vs (t - tf), an estimate for τ.
The subsequent application of nonlinear (Marquardt) regression
to the stress data, following the form of eq 33, yields a value for
A. Simple algebraic manipulation of A, τ, and σ∞ therefore returns:
24

and

as estimates for substitution into the equational definition (eq 24)
for the relaxation function.

Solution of Viscoelastic Case EquationssThe premise of
this study was to mathematically describe the link between applied
load and the evolution of particle-particle contact area between
spherical bodies during densification. In this way, the material
response may be incorporated in the mathematical description.
The experimental data described in the preceding sections mea-
sured specific contact area growth resulting from specified applied
loads, which then serve as input boundaries for the mathematical
relation described in the set of eqs 27-30.

Decomposition of the stress-time curves into applied periods
of strain allowed for the estimation of the variables comprising
the relaxation modulus operator (Ψ(t), eq 24). The radius of the
contacting area (eq 28) was then to be solved for a prescribed
loading force-time with substitution of this viscoelastic operator
Ψ(t). Application of integration by parts (see Appendix IV) provided
a simplified form of the equation

which was then processed using the numerical quadrature algo-
rithm of a commercial high-performance numeric computation and
visualization software program (MATLAB, The MathWorks, Inc.,
Natrick, MA). The initial processing was performed with a Fortran
numerical quadrature subroutine,22 which was cumbersome com-
pared with the speed with which the commercial form using a
recursive adaptive Newton-Cotes 8 panel rule was able to ame-
liorate the calculations.

A best-fit polynomial form for the contact area-time description
was then returned as input into the equation form describing the
pressure distribution within the sphere. Equations 29-30 were
likewise simplified to

where τ ) η/(E1 + E2), and processed in MATLAB.

Results and Discussion
The primary motivation for studying the particle level

contact was the need to ascertain a time-dependent mate-
rial function for subsequent modeling analysis. With the
focus of this study centered on the interaction zone between
two particles under mutual deformation, the loading force
under which our experimental matrixes were subjected and
the resultant experimental area growths were monitored.
The applied loading force curves are depicted in Figures 7
and 8 inclusive. Each displayed curve represents the
average of several large experimental datasets; the experi-
mental standard deviation for selected points along a curve
are shown in Figure 9 for clarity. In accordance with the
geometry of the load application, the applied force experi-
enced within the contact zone matches that which was
applied externally through the Instron apparatus. The
effect of the applied nominal strain rates is clearly shown
in the force versus time series of Figure 7. As expected,
the time to achieve a defined maximum load was inversely
proportional to the crosshead speed, and, within experi-
mental error, the ratio of such times mirrored the ratios
of the respective strains (1:2:5:10) applied.

Force-time curves were replotted in Figure 8 for each
nominally applied strain rate. Within experimental error,
then, the maximum load level itself may be inferred as a
function of the time under which the cylinders are com-
pressed and hence not wholly independent of the applied
rate of strain. The fitted coefficients for the power form of
the force-time curves are summarized in Table 1. From
multiple regression analyses, the prescribed loading force-
time, P(t), rate dependence may be embodied in the
equational form

where ε̆ is the applied strain rate. The value R2
adj ) 98.34,

SE ) 0.0424, mean absolute error equals 0.0246, and the
mean square residual is 1.802 × 10-3.

Radial contact growth curves derived from triplicate runs
are displayed with error bars representing the replicate
variability in Figures 10a-d inclusive. The effect of the
applied nominal strain rates is clearly revealed in the
sequence of plots where the strain rate differs in achieving
a standard maximum load. This rate dependence is analo-
gous to that which was manifest in the force-time series;
that is, the time required to attain a specified dilation was
inversely proportional to the applied crosshead speed and,
within experimental error, the ratio of these times were
roughly 1:2:5:10.

By replotting the radial growth curves in Figures 11a-d
for each nominally applied strain rate, the effect of the
maximum load level achieved is evidently once again a
function of the time spent under compression. Each curve
series held at a constant strain rate resembles a collinear
plot within experimental error. The errors associated with
higher strain rates are larger in relation to the points
shown at lower strains because there is a finite time
required to measure, process, and handle the photographs
capturing the changing radial area.

The experimental radial growth data curves were sub-
jected to simple regression fitting (minimization of least
squares), and the coefficients of the normalized radial
growth, a(t), fitted to the square root of time are tabulated
in Table 2.

The solution of the constitutive differential equation
describing the behavior during a stress relaxation experi-
ment to yield the relaxation function parameters is not an
easy task. For simple models comprised of one to three

P(t) ) (2.859 × 10-2
ε̆ + 3.233 × 10-3

ε̆
2)(t - lagtime)1.1

(39)

σ∞ )
E1E2

E1 + E2
ε̆0tf

∴σ(t) ) A[1 - exp-
t
τ] + σ∞

t
tf

(33)

E1 ) 1
τε̆0

(A +
σ∞τ
tf

) (34)

E2 )
σ∞

ε̆0tf
(1 +

σ∞τ
Atf

) (35)

η ) 1
ε0(A +

2σ∞τ
tf

+
σ∞

2τ2

Atf
2 ) (36)

a3(t) ) 3
8

πR{P(t)
E1

- ( 1
E1

+ 1
E2

- 1
E2

e-
tE2

η )P0} +

∫0

tP(t′)
η

e-
(t - t′)E2

η dt′ (37)

p(r,t) ) 8
πR{(a2(t) - r2)1/2E1 - (a0

2 - r2)1/2(E1
2e-

t
τ + E1E2)

E1 + E2
-

∫0

t
(a2(t′) - r2)1/2‚

E1
2

(E1 + E2)τ
e-

(t - t′)

τ dt′} (38)

Journal of Pharmaceutical Sciences / 267
Vol. 88, No. 2, February 1999



elements, the relaxation function may be formulated using
hybrid parameters, which also allows a valid conversion
to the creep compliance at the same point and at the same

time.25 In more complex models, the relaxation force
equalizes differently in time and direction using parts of
the springs, dashpots, and Kelvin elements differentially

Figure 7sApplied load−time curves for various strain rates imposed on the mutually indenting matrixes: to a maximum load level of (a) 3.0 kN; (b) 3.5 kN; (c)
4.0 kN; and (d) 4.5 kN. Key: (s) 1 mm/min; (− − −) 2 mm/min; (‚‚‚) 5 mm/min; (- - -) 10 mm/min.

Figure 8sApplied load−time curves at specified strain rates and various loading levels for the cylinders in crossed compaction: loading at (a) 1 mm/min; (b) 2
mm/min; (c) 5 mm/min; and (d) 10 mm/min. Key: (s) 3.0 kN; (− − −) 3.5 kN; (‚‚‚) 4.0 kN; (- - -) 4.5 kN.
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until a forceless condition arises. Consequently, in the time-
dependent domain, no simple relation between the creep
compliance and the relaxation function may be found.25

Extraction of the relaxation function parameters, based
on a standard three-element model from compaction load-
time experiments, was preferred over the use of traditional
measured creep tests over long times and elevated tem-
peratures. As previously inferred, such tests would neces-
sitate recasting specimen geometry or induce unwonted
alterations in the material microstructure. A method used
in material science to evaluate the viscosity and the two
elastic modules of a three-parameter model during a
combined experiment consisting of deformation with a
constant strain rate followed by stress relaxation was
adopted as a suitable means of evaluation of the PMMA/
coMAA Ψ(t) parameters. The crossed cylinder compactions
performed consisted of the prerequisite deformation, load-
time monitoring under a set crosshead speed, and relax-
ation monitoring under constant strain. The assumption
of the equivalence of a constant crosshead speed with a
constant nominal strain rate is a best first approximation.
This method is consistent with an engineering definition
of strain26 (ε ) ∆l/l0, where ∆l is the change in distance, l
is the postfacto length, and l0 is the original specimen
length) rather than that of true strain [εt ) ∫dl/l0 ) ln(l/
l0)].

Others25 have used solely numerical means for decom-
posing tabletting load-time curves. In both convolution
and deconvolution processes of estimating viscoelastic
model parameters, the numerical stability of the regression
methods are problematic. The limited accuracy of the
numerical transactions and the uncertainty of the initial
condition estimates necessitates validation with well-
defined, known theoretical material data. This necessity
is especially true in the case of powder-type consolidation
because volume reduction itself augments viscoelastic
features.25

Figure 12 serves to illustrate the use of the decomposi-
tion method for the determination of the three-parameter
viscoelastic terms for one specific case. The procedure is
visually elucidated in terms of the decomposition of the
stress relaxation curve into components in the development
and provides an example of the nonlinear regression
analysis used to determine the estimates in the summation
process.

The derived parameters required for the relaxation
modulus calculation are then summarized in Tables 3 and
4 per the method already described. These parameters
serve as input variables in merely defining the viscoelastic
operator over a limited time frame and by no means can
be used to define Ψ(t) over the time spectrum in its
entirety.

Evaluation of the relaxation modulus (eq 24) with the
parameters derived in Table 4 is shown in Figure 13. In
physical terms, the relaxation modulus represents the time-
dependent analogue of the equilibrium shear modulus,
which in itself is a ratio of a stress to a corresponding strain
measured in an experiment with a specific time pattern.
The shape and magnitude of the log-log plots are consis-
tent with that expected for an un-cross-linked polymer
network of high molecular weight:18 at short times, Ψ(t)
approaches a limiting value that represents the rigidity of
the chain in the absence of backbone rearrangements, and
at long times, Ψ(t) falls rapidly for the un-cross-linked
networks and eventually vanishes. A mechanical model
analogue would translate this behavior as the relaxation
of all the springs in an array. Alternatively, in molecular
terms, this configuration corresponds to the resumption of
random average configurations by the macromolecular coils
that have been divested from the constraints originally
imposed on them. The external dimensions of the sample
in question may remain deformed at long times during this

Figure 9sLoading force−time plots of the results obtained from use of the
applied strain rates (a) 1 mm/min, (b) 2 mm/min, (c) 5 mm/min, and (d) 10
mm/min, to a maximum of 4.5 kN. Displayed in dotted form are the resultant
curves predicted for the prescribed loading at these various strain rates.
Selected experimental datapoints depicting the standard deviations between
triplicate runs are highlighted.

Table 1sForce−Time Loading Phase of PMMA/CoMAA Matricesa

strain rate
(mm/min)

maximum
load (kN)

average coefficient
of fit (×10-2)

average lag
time (s)

1 3.0 4.239 ± 0.57 34.17 ± 3.22
1 3.5 3.431 ± 0.14 19.74 ± 0.10
1 4.0 3.288 ± 0.62 21.12 ± 0.76
1 4.5 3.370 ± 0.35 19.49 ± 1.38
2 3.0 8.382 ± 0.81 13.72 ± 5.16
2 3.5 7.250 ± 0.77 11.00 ± 0.47
2 4.0 8.047 ± 1.71 13.28 ± 4.43
2 4.5 6.966 ± 1.02 9.990 ± 1.35
5 3.0 25.28 ± 0.58 7.040 ± 0.19
5 3.5 18.49 ± 3.37 4.300 ± 0.47
5 4.0 23.36 ± 2.97 4.000 ± 0.34
5 4.5 20.13 ± 1.44 4.460 ± 1.17

10 3.0 58.69 ± 4.32 3.410 ± 0.21
10 3.5 62.33 ± 2.23 2.820 ± 0.93
10 4.0 59.68 ± 4.72 2.330 ± 1.17
10 4.5 58.20 ± 15.95 2.520 ± 1.01

a P(t) ) coefficient*(t − lag time)1.1. Average fitted coefficients reported
are calculated from triplicate runs in each case. Standard deviations reported
reflect the matrix-matrix variability.

Table 2sNormalized Radial Growth with Time during Loading Phase
of PMMA/CoMAA Matricesa

strain rate
(mm/min)

maximum
load (kN)

intercept of fit
(×10-2)

coefficient of fit
(×10-1)

1 3.0 −0.198 ± 2.0 1.201 ± 0.04
1 3.5 −8.500 ± 3.0 1.349 ± 0.05
1 4.0 −2.723 ± 1.5 1.256 ± 0.02
1 4.5 −14.47 ± 2.2 1.416 ± 0.03
2 3.0 −8.836 ± 3.9 1.845 ± 0.11
2 3.5 −11.54 ± 2.8 1.884 ± 0.07
2 4.0 −16.50 ± 3.6 1.955 ± 0.09
2 4.5 −11.55 ± 2.6 1.862 ± 0.05
5 3.0 −18.68 ± 7.2 3.679 ± 0.29
5 3.5 −6.614 ± 2.0 3.163 ± 0.09
5 4.0 −18.06 ± 3.1 3.528 ± 0.13
5 4.5 −5.969 ± 4.4 3.255 ± 0.16

10 3.0 −2.216 ± 7.0 5.171 ± 0.33
10 3.5 −4.783 ± 5.4 6.477 ± 0.25
10 4.0 −3.845 * 5.682 *
10 4.5 −2.135 * 5.312 *

a a(t) ) intercept + coefficient × xt. Average fitted coefficients reported
are calculated from triplicate runs in each case. Standard errors reported reflect
the matrix−matrix variability.

Journal of Pharmaceutical Sciences / 269
Vol. 88, No. 2, February 1999



resumption of molecular motion; the residual deformation
is the result of the flow contribution to what is essentially
a creep experiment.

The magnitude of the compressionally derived modulus
depicted in Figure 13 is lower than that reported for
PMMA14 achieved by tension experimentation. This dif-

Figure 10sAveraged radial contact growth-time series for various strain rates measured concomitantly: to a maximum load level of (a) 3.0 kN; (b) 3.5 kN; (c)
4.0 kN; and (d) 4.5 kN.

Figure 11sRadial contact growth−time series for the cylinders in crossed compaction at specified strain rates: loading at (a) 1 mm/min; (b) 2 mm/min; (c) 5
mm/min; and (d) 10 mm/min.
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ference is not unexpected, because of the experimental
configurational differences and the differences between the
two experimental time patterns. At intermediate times
depicted in each curve of the figure, the stress shown
gradually falls as the distortion of the chain backbones
compensates through Brownian motion; segments would
adjust first with respect to other closely neighboring
segments and then with respect to those farther removed.
The modulus falls off sharply thereafter in the region time
scale of the terminal zone.

The time dependent operator Ψ(t) displays the effects of
the applied strain rates 1, 2, 5, and 10 mm/min shown
through the superposition of curves a-d. The trend is in
accord with the anticipated rate effect, that is, the inflection
time marking the terminal zone is abbreviated with higher
strain rates, while the inflection times are elongated with
lower strains.

The parameters tabulated in Table 4 served as input for
the calculation of the relaxational modulus and thereby the
predicted radial contact growth for a prescribed load-time
application. Numerical quadrature of the transformed eq
37 predicts a resultant contact growth that has been
superimposed on the experimental dataset in Figure 14.
The predicted curves are further tabulated using simple
least squares regression in Table 5. Although the predicted
curve lies within the range of experimental error, deviation
from the measured growth may be due to error in the steps
taken for the approximation of the specific relaxational
modulus form. Indeed, assessing the fit of the predicted
curves to this experimental set would not be a valid means
of evaluating the utility of the model form as a predictive
tool. An independent particle densification series based on
stepped load, which was not itself used in the evaluation
of the stress relaxation curves from which the relaxation

operator was interpolated, would be required; such an
assessment will form the basis for subsequent study.

In assessing the viscoelastic operator parameters derived
in Table 4, it is clear that the value of the arbitrary
maximum load level at which replicate runs were held is
a complex function of the time under which loading occurs
in a fashion similar to that deduced for load-time and
radial growth-time curves. The nominal strain rate under
which the matrixes were subjected serves as a better
independent measure of the time-dependent behavior of
each of the modulus parameters that comprise the Ψ(t)
operator. Multiple regression analysis of these tabulated
parameters offers a best fit for E1, E2, and η when
stratifying for specific load levels achieved. For the 4.5 kN
levels, as an example,

represents a parametrization set that may be used for
interpolative prediction within the experimental bound-
aries delineated in the origin of the dataset. The values of
E1, E2, and η represent theoretical estimates of the stiffness
and flowability of the viscoelastic material. Together, these
values form a mathematical construct of the viscoelastic
behavior of the material that allows for prediction of the
material behavior under different testing conditions. In a
viscoelastic body, all of the stresses, strains, and displace-
ments occurring are time dependent, whereas in an elastic
solid under constant load, these parameters are indepen-
dent of time. The values of these spring moduli and dashpot
viscosity may provide an estimate of elastic parameters
that represent the limiting case of a viscoelastic material.
This theory is elucidated in Appendix V. Obviously, caution
must be exercised in attempting to extrapolate beyond the
strain rates prescribed because the size of the dataset lends
insufficient power to that function.

The pressure distribution within the two mutually
indenting viscoelastic three-parameter model spheres was
also found by substituting the relaxation modulus function
solved from eq 24 and a(t) as derived from eq 37 into eq 38
and performing the integrations. The computations were
carried out for each of the cases indicated in Table 4; the
results are plotted in Figures 15a and b for the case of 4.5
kN at both 1 and 10 mm/min loading. These simplified
sketches display a two-dimensional projection of the matrix
solution which forms a three-dimensional contour (radius,
time) in the Cartesian plane. From this schematic, one may
infer that immediately following load application, there is
an instantaneous elastic response from which the initial
contact radius arises. This contact size then grows with
time as discussed in preceding sections. It is apparent that
the pressure distribution is similar to the Hertz elastic form
given by

in which the maximum pressure is in the center of the
contact area. As time progresses during loading, the
balance of relaxation, contact, and load growth favors an

Figure 12sSchematic of the decomposition of the stress−time curve for the
case of a load level of 3.0 kN achieved through loading at 1 mm/min. Evaluation
of the viscosity and modulus components of a three-parameter model follows
that described by Hsueh.23

E1 ) 1.70 × 10-3 + 1.60 × 10-3
ε̆ - 4.47 × 10-4

ε̆
2 +

3.62 × 10-4
ε̆

3 - 5.58 × 10-7
ε̆

4

E2 ) 5.21 × 10-4 + 4.28 × 10-5
ε̆ - 5.69 × 10-5

ε̆
2 +

6.96 × 10-6
ε̆

3 - 1.15 × 10-7
ε̆

4

η ) 5.30 × 10-1 - 1.71 × 10-1
ε̆ + 3.67 × 10-2

ε̆
2 -

2.91 × 10-3
ε̆

3 + 4.47 × 10-5
ε̆

4

p ) p0(1 - (ra)2)-1/2
(40)
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expanding pressure distribution. Variation in the loading
rate results in a marginally greater magnitude of pressure
distributed in a similar fashion. The time-dependent effect,

therefore, would appear to consist of the growth in the
contact from its initial to its final size; the stresses at any
instant in the process being distributed according to elastic
theory.

Table 3sCalculation of Material Viscoelastic Parameters Per Method of Hsueh23

4 × 4 matrix
element code

peak time
tf (s)

relaxation stress
σ∞ (MPa) (×10-2)

tau-1

(×10-2)
coefficient A

(×10-2)
E1

(×10-3)
E2

(×10-3)
η

(×10-1)

11a 54.87 4.670 3.186 (0.01) 6.664 (0.80) 2.974 1.192 1.308
11b 46.00 6.716 5.794 (0.02) 4.567 (0.84) 4.107 2.265 1.100
11c 43.01 7.448 7.769 (0.06) 3.998 (0.82) 4.838 2.697 0.970
12a 64.31 2.359 1.443 (0.01) 20.03 (0.97) 3.258 0.413 2.544
12b 68.09 2.683 1.545 (0.01) 17.46 (0.91) 3.092 0.452 2.293
13a 70.16 3.684 0.909 (0.002) 32.61 (1.37) 3.489 0.618 4.519
13b 105.67 2.967 1.054 (0.002) 28.96 (1.18) 3.332 0.307 3.453
13c 75.9 2.707 0.639 (0.001) 24.00 (1.34) 1.890 0.440 3.656
14a 91.44 3.291 0.804 (0.001) 27.62 (1.16) 2.580 0.418 3.731
14c 77.63 3.981 0.928 (0.001) 29.13 (1.30) 3.215 0.610 4.124
21a 25.66 8.042 11.46 (0.09) 5.224 (0.85) 4.560 2.388 0.606
21b 23.37 4.512 3.359 (0.01) 17.57 (1.10) 3.916 1.281 1.547
21c 27.61 5.568 7.219 (0.04) 7.890 (1.00) 3.856 1.365 0.723
22b 37.49 2.959 1.517 (0.006) 46.99 (1.36) 3.959 0.438 2.899
22c 34.35 2.335 1.200 (0.005) 43.81 (1.33) 2.969 0.384 2.793
22d 30.76 3.289 1.416 (0.004) 40.12 (1.33) 3.376 0.635 2.832
23a 34.74 2.614 1.293 (0.003) 38.14 (1.11) 2.842 0.434 2.534
23c 28.79 11.09 14.70 (0.20) 5.407 (0.86) 5.901 2.861 0.596
23d 45.95 1.502 0.827 (0.001) 44.68 (1.03) 2.012 0.178 2.646
24a 45.69 3.541 1.344 (0.004) 44.26 (1.47) 3.362 0.438 2.827
24b 50.92 2.161 0.843 (0.001) 58.80 (1.72) 2.690 0.230 3.465
24c 38.91 4.266 1.566 (0.002) 46.24 (1.73) 4.168 0.631 3.065
31a 9.54 5.072 18.23 (0.12) 6.809 (0.93) 3.545 1.519 0.278
31b 9.27 3.664 11.39 (0.09) 11.40 (1.00) 3.387 1.031 0.388
31c 9.27 2.247 5.632 (0.02) 22.37 (1.10) 3.005 0.578 0.636
32a 18.12 0.685 1.211 (0.002) 79.53 (1.79) 2.003 0.079 1.718
32b 13.62 0.740 1.058 (0.002) 135.3 (1.87) 2.971 0.113 2.915
32c 12.95 1.029 1.425 (0.003) 109.1 (1.85) 3.269 0.167 2.410
33a 11.92 1.102 1.660 (0.004) 90.27 (1.62) 3.182 0.196 2.035
33b 15.19 0.308 0.639 (0.002) 165.1 (1.52) 2.152 0.041 3.430
33c 12.89 1.358 2.294 (0.006) 59.04 (1.61) 2.920 0.227 1.372
34a 16.54 0.975 1.111 (0.002) 123.8 (2.03) 2.869 0.123 2.694
34b 18.82 0.788 1.021 (0.002) 113.8 (1.97) 2.408 0.087 2.443
34c 16.25 0.946 1.205 (0.002) 117.2 (2.14) 2.939 0.121 2.540
41b 4.69 2.982 13.26 (0.08) 19.96 (0.97) 3.282 0.788 0.307
41c 4.18 1.809 7.021 (0.03) 45.45 (1.11) 3.624 0.491 0.586
42a 4.75 5.175 25.50 (0.25) 10.98 (0.87) 3.888 1.514 0.212
42c 4.63 2.411 8.886 (0.03) 31.88 (1.04) 3.354 0.616 0.447
42d 4.85 2.428 12.03 (0.06) 25.19 (1.00) 3.532 0.583 0.342
43a 5.12 5.662 24.86 (0.25) 11.24 (0.92) 3.901 1.543 0.219
43c 5.69 2.797 12.78 (0.08) 25.36 (1.00) 3.733 0.566 0.336
43d 5.71 5.986 38.39 (0.33) 7.463 (0.78) 3.914 1.432 0.139
44a 8.91 2.309 7.612 (0.03) 23.30 (1.10) 2.033 0.297 0.306
44b 5.61 8.089 40.28 (0.31) 8.776 (1.14) 4.976 2.030 0.174
44c 5.51 3.954 14.84 (0.14) 23.12 (1.29) 4.148 0.868 0.338

Table 4sCalculation of Material Viscoelastic Parametersa

strain rate
(mm/min)

maximum
load (kN)

average E1

(×10-3)
average E2

(×10-3)
average η

(×10-1)

1 3.0 3.973 ± 0.94 2.052 ± 0.78 1.126 ± 0.17
1 3.5 3.175 ± 0.12 0.433 ± 0.03 2.418 ± 0.18
1 4.0 2.904 ± 0.88 0.455 ± 0.16 3.873 ± 0.57
1 4.5 2.897 ± 0.45 0.514 ± 0.14 3.927 ± 0.28
2 3.0 4.111 ± 0.39 1.678 ± 0.62 0.959 ± 0.51
2 3.5 3.435 ± 0.50 0.486 ± 0.13 2.841 ± 0.05
2 4.0 3.585 ± 2.05 1.158 ± 1.48 1.925 ± 1.15
2 4.5 3.407 ± 0.74 0.433 ± 0.20 3.119 ± 0.32
5 3.0 3.312 ± 0.28 1.043 ± 0.47 0.434 ± 0.18
5 3.5 2.748 ± 0.66 0.119 ± 0.04 2.348 ± 0.60
5 4.0 2.751 ± 0.54 0.155 ± 0.10 2.279 ± 1.05
5 4.5 2.739 ± 0.29 0.110 ± 0.02 2.559 ± 0.13

10 3.0 3.453 ± 0.24 0.640 ± 0.21 0.446 ± 0.20
10 3.5 3.591 ± 0.27 0.905 ± 0.53 0.333 ± 0.12
10 4.0 3.849 ± 0.10 1.180 ± 0.54 0.232 ± 0.10
10 4.5 3.719 ± 1.52 1.065 ± 0.88 0.273 ± 0.09

a Average fitted coefficients reported are calculated from triplicate runs in
each case. Standard deviations reported reflect the matrix−matrix variability.

Figure 13slog−log plot of the relaxational modulus−time curves calculated
for compaction at the rates of loading at (a) 1 mm/min, (b) 2 mm/min, (c) 5
mm/min, and (d) at 10 mm/min, to a maximum load of 4.5 kN.
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Conclusions
The present investigation was undertaken to examine

the basic unit of densification: the particle-particle in-
teraction. Emphasis was placed on the contact interface
between two spheres under compression as interparticulate
bonding inherently occurs whenever an area of true contact
is established between two solids; the interfacial energy is
always less than the surface energy of the two surfaces
which form the interface. The degree of cohesion within a
tablet was assumed to be largely governed by the magni-
tude of this true interparticle contact area created during
densification.

The interfacial description of two linearly viscoelastic
spheres in normal contact was described mathematically
by replacing the elastic constant of the elastic solution by
the integral operator from the viscoelastic stress-strain
relations. An explicit relation was delineated between
contact area evolution and the applied or prescribed contact
force in a 4 × 4 matrix of varying strain and load level.
The analysis of the extended Hertzian solution with
experimentally determined input parameters yielded two-
dimensional surface plots which map the evolution of these
variables of local contact force, area growth, and pressure
functions with time and applied strain rate at specified
maximum loads. Within the context of the experimental
time frame, these relations form the basis for the super-
position of such contacts in summation over the entire
powder bed.

By defining the contact between mutually indenting
viscoelastic particles, the compact may ultimately be mod-
eled as a collection of these particles in contact and in this
way address the time-dependent response of materials to
applied loads. This summation to describe a tabletting
powder is the subject of the second paper in this series.

Acknowledgments
This work was abstracted in part from a dissertation submitted

by S.L. to the Graduate School, University of Toronto, in partial
fulfillment of the Doctor of Philosophy degree. The authors thank

and acknowledge the financial assistance of MRC in the form of a
grant (to W.D.H.) and a studentship (to S.L.) in supporting this
study.

Appendix I
As the length of the cord bc ) 2r ) 2a cos θ, r ) a cos θ

since a sin θ ) r sin ψ

Appendix II
Pressure Applied to a Circular RegionsWhen axi-

symmetrical pressure distributions of the form

are applied to a circular region of radius a, the displace-
ments at surface points and the stresses at internal points
due to this pressure distribution may be found in closed
form.

In the particular case where n ) 1/2, the pressure
distribution is referred to as the “Hertz pressure” given by
Hertz theory. This pressure is exerted between two fric-
tionless purely elastic solids of revolution in contact.

As the total loading or compressive force, P, relates to
this pressure, q, via

then

let u ) a2 - r2, du ) -2rdr, rdr ) -1/2 du, and a2 ) u +
r2

Appendix III
Derivation of Simplified Three-Dimensional Form

for Viscoelastic Constitutive Description19sWhen a
problem has more than one stress component, then a
generalization of the viscoelastic law to the three-dimen-
sional form may be needed. If a viscoelastic material is

Figure 14sPredicted radial growth curves for various strain rates imposed
on the compact to a loading level of 4.5 kN: loading at (a) 1 mm/min, (b) 2
mm/min, (c) 5 mm/min, and (d) 10 mm/min.

Table 5sPredicted Normalized Radial Growth with Time During
Loading Phase of PMMA/coMAA Matricesa

strain rate
(mm/min)

intercept of fit
(×10-2)

coefficient of fit
(×10-2)

1 −4.005 (0.25) 12.846 (0.06)
2 −0.741 (0.10) 16.577 (0.04)
5 −7.281 (0.30) 32.381 (0.17)

10 −0.941 (0.18) 42.564 (0.15)

a Average fitted coefficients and standard errors reported are calculated
for a maximum loading level of 4.5 kN.

a2 sin2 θ ) r2 sin2 ψ

a2(1 - cos2 θ) ) r2 sin2 ψ

a2 - a2 cos2 θ ) r2 sin2 ψ

a2 cos2 θ ) a2 - r2 sin2 ψ

∴a cos θ ) xa2 - r2 sin2 ψ
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q ) q0(1 - r2
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p )
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isotropic, a hydrostatic stress must produce a dilatation
and no distortion. The stress and strain are related by the
differential equation

or, shorter, by

On the other hand, if shear is present, then the shear strain
coupled with isotropy of the material requires that

or

where σ̂ and ε̂ correspond to the components of the stress
and strain deviators.

The operator pairs P′′, Q′′, and P′ and Q′, which describe
the viscoelastic material, are entirely independent of each
other. To each pair, the relation stated in eq 23 or 24 is
applicable for a standard three element model.19 These
operator pairs for different rheological models are also
summarized in Flugge (Table 1.2; pp 22-23)19 and in
Muller (pp 108, 110, 112, 119, 121).25

In uniaxial tension, there is only one stress, σx; and
strain has three components, the axial strain εx and the
lateral contractions εy ) εz. As the operators are assumed
linear and time invariant, the commutative properties
yields

for applied uniaxial stress. By analogy,

follows for applied uniaxial strain (in stress relaxation
experiments).

Equations III.6-III.9 serve as the viscoelastic equivalent
of a complete statement of Hooke’s law for uniaxial tension.
Interpretation requires special choices for the operators.

As stated by Flugge (p 167),19 although the shear
deformation may be rather large, the change of volume
measured by E is always very limited. It seems therefore,
reasonable to neglect the latter completely and to assume
E ) 0. This corresponds to P′′ ) 0 and Q′′ ) 1. The
constitutive equations for uniaxial stress in tension are
then

and for applied uniaxial strain,

Appendix IV

integration by parts uv - ∫vdu: let

calculate a(t) per given P(t).
Similarly,

Figure 15sSolution of the pressure equations predicts a stress distribution similar to the elastic form. (a) two-dimensional surface contour plot of the pressure
distribution for loading at 1 mm/min to the 4.5 kN level; and (b) loading at 10 mm/min to the 4.5 kN level.

σ + p1σ̆ + p2σ̈ + ... ) q0ε + q1ε̆ + ... (III.1)

(∑
0

m

pk

dk

dtk)σ ) (∑
0

n

qk

dk

dtk)ε (III.2)

P′′σ ) Q′′ε (III.3)
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0

m′

p′k
dk

dtk) σ̂ ) (∑
0

n′

q′k
dk

dtk)ε̂ (III.4)

P′σ̂ ) Q′ε̂ (III.5)

(P′′Q′ + 2Q′′P′)σx ) 3Q′′Q′εx (III.6)

(P′′Q′ - Q′′P′)σx ) 3Q′′Q′εy (III.7)

(Q′′P′ + 2P′′Q′)εx ) 3P′′P′σx (III.8)

(Q′′P′ - P′′Q′)εx ) 3P′′P′σy (III.9)

2P′σx ) 3Q′εx and -P′σx ) 3Q′εy (III.10)

2Q′εx ) 3P′σx and -Q′εx ) 3P′σy (III.11)
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where

let

and

Appendix V
Derivation of Elastic Parameters as a Limiting

Case19sIn a viscoelastic body, all of the stresses, strains,
and displacements occurring under load are time depend-
ent. The elastic solid is then a limiting case of a viscoelastic
material. The moduli of the springs of the rheological model
do not correspond simply to Young’s modulus because time,
temperature, and stress dependence are overt consider-
ations. If, for example, one considers a material tested in
tension, the plot of the compliance would show that the
ratio εx/-εyvaries with time. This time dependence indicates
that the concept of Poisson ratios etc. are not very
meaningful for a viscoelastic material.19

The linear elastic law (Hooke’s law) in the form (III.1;
see Appendix III) would render the four operators as
multiplicative constants and the formulation of the stress
deviation as19

The differential operators P and Q can be replaced by
polynomials F(s) and ϑ(s) in considering an elastic body,
hence,19

where σj and εj are the Laplace transforms of the time-
dependent stresses and strains. These algebraic relations
define the limits of their elastic counterparts if19

For a standard (three-parameter material), a reduced or
effective modulus ER(t, τ) offers estimates of an instanta-
neous ER(τ0,τ0) and an asymptotic modulus ER(∞,τ):17

List of Symbols

ε̆0 constant strain rate
ε̆ rate of strain
τ interval within domain t, also designated η/(E1

+ E2)
υ Poisson’s ratio
σ∞ limiting stress during stress relaxation
Φ(t) creep function
ε(t) strain which varies with time
σ(t) stress which varies with time
Ψ(t) the relaxation modulus function, a viscoelastic

operator
R, R1, R2 total distance of approach of two spheres, of each

sphere designated 1 and 2
σf stress at time corresponding to beginning of

stress relaxation (strain rate ) 0)
∆l change in distance
εt true strain
A coefficient ) (E1/E1 + E2)2ηε̆0

a, a(t) particle contact radius (radius of circular contact
region) varying with time

E elastic modulus
E1, E2,

η
elastic moduli of the springs and viscosity coef-

ficient of the dashpot of a standard rheological
model

K, G bulk, and shear modulus
k1 + k2 elastic constant term ) (1 - υ2)/πE upon sub-

stitution
l length
l0 original specimen length
P(t) applied compressive force acting normal to the

surface
p, p(r,t) normal contact pressure which varies with con-

tact radius and time
q, q0 concentrated pressure, maximum pressure
r distance from sphere center, x coordinate of point

(r,z) of indenting sphere, r , R
R, R1,

R2

radius of curvature, of the indenting spheres
designated 1 and 2, respectively

t′ dummy time variable within interval t
tf time at which stress relaxation begins, total

strain is held constant
w1, w2 deformation of sphere 1 and 2 owing to contact

pressure
x, y, z Cartesian coordinates
z1, z2 Cartesian coordinate projection of deforming

surface points, designated 1 and 2
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